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1 Introduction

In this document we have collected problems from combinatorics, com-
binatorial number theory, computational number theory, and geometry
that are hopefully, engaging and challenging for High School students,
and do-able by them.

Our main aim in collecting and presenting these problems is to provide
High School students with a fun collection: problems that stimulate
and challenge their mathematical thinking, and are fun to work on.

1.1 Several flavors of problems

These problems tend to come in several distinct “flavors”. One flavor
consists of curious, often tantalizing, yet somewhat contrived, puzzles.
These are often engaging, fun to work on, and sometimes offer beau-
tiful insights. Working on these problems can be very satisfying and
great fun.

Another flavor consists of investigations, in which there is not a single
clearly stated problem, but instead a proposed investigation of some
curious phenomenon.

Thirdly, another, generally very hard, flavor of problems consists of
unsolved problems. These are mostly problems that several, if not
many, professional mathematicians have thought about long and hard
and have not yet been able to resolve. While it’s sensible to be aware
of these unsolved problems, and perhaps to think for a short time what
the problem entails, it is generally not a wise move to spend a long
time thinking about these hard unsolved problems simply because the
chance of solving them is very low, and time spent on them means
time taken away from other potentially solvable problems.
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Another flavor, which we will into go into in detail here consists of
problems that come from other branches of mathematics. For exam-
ple, in graph theory, a fundamental problem is how many essentially
different graphs there are with a given number of vertices. For exam-
ple, here are the 4 essentially different graphs with 3 vertices:

Counting, or “enumerating”, the number of essentially different graphs
with n vertices is a fundamental problem in graph theory and utilizes
a method known as Polya-Burnside enumeration.

1.2 Software for computation

Occasionally you might need, or want to, use mathematical software
to carry out computations. Two open source software packages for this
purpose are:

1. SageMath

2. Geogebra
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1.3 New delights and unexpected connections

As you peruse these problems and investigations bear in mind the
words of the late, great Bill Thurston,

Figure 1: William P. Thurston

who wrote:

“Mathematics has a remarkable beauty, power, and coher-
ence, more than we could have ever expected. It is always
changing, as we turn new corners and discover new delights
and unexpected connections with old familiar grounds.”

As you engage with a problem, and potentially get stuck and confused,
bear in mind some other helpful words from Bill Thurston:
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“Mathematics is a process of staring hard enough with
enough perseverance at the fog of muddle and confusion to
eventually break through to improved clarity. I’m happy
when I can admit, at least to myself, that my thinking is
muddled, and I try to overcome the embarrassment that
I might reveal ignorance or confusion. Over the years,
this has helped me develop clarity in some things, but I
remain muddled in many others. I enjoy questions that
seem honest, even when they admit or reveal confusion,
in preference to questions that appear designed to project
sophistication.”
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1.4 Acknowledgements

A major stimulus and source of inspiration for us in compiling this list
of mathematical problems for High School students and undergradu-
ates, has been Dr. James Tanton (On Twitter: @jamestanton)

and you will see numerous acknowledgements to James on individual
problems, where he contributed either the whole problem itself, or the
stimulus for us to enlarge an original idea of his.
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2 Curious, tantalizing puzzles

2.1 Coloring a square grid

This problem is from Klee, S., Malkin, K. & Pevtsova, J. (2021). Math
Out Loud: An Oral Olympiad Handbook (Vol. 27). American Mathe-
matical Society, and was posted on Twitter by James Tanton (@james-
tanton):

Draw a path of horizontal and vertical steps from the top left cor-
ner to the bottom right corner of an n×n grid. If step 1 is horizontal,
color all cells below it, turn 90 degrees, color rightward all squares back
to the path. If step 1 is vertical, go rightward, then down. Do this for
the first n steps. Is the whole grid sure to be colored?
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2.2 Which integer sequences are possible?

(1) Sequences a0, a1, a2, a3, . . . of non-negative integers an are con-
structed subject to the following constraints:

• a0 = 0

• a1 = 1

• for all n ≥ 1, an = ⌊an−1+an+1

2 ⌋, where for a real number x, ⌊x⌋ is
the floor of x: the greatest integer less than, or equal to, x.

What are the possible integer sequences that satisfy these constraints?

Thanks to James Tanton (@jamestanton on Twitter) for this idea.

(2) As a variant, investigate and characterize positive integer sequences
a1, a2, a3, . . . constructed subject to the following constraints:

• a1 = 1

• a2 = 1

• for all n ≥ 1, an = ⌊√an−1 ∗ an+1⌋, where, as before, for a real
number x, ⌊x⌋ is the floor of x: the greatest integer less than, or
equal to, x.
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2.3 Cutting a checker board

This problem is adapted from Klee, S., Malkin, K. & Pevtsova, J.
(2021). Math Out Loud: An Oral Olympiad Handbook (Vol. 27).
American Mathematical Society:

A 5 × 5 checkerboard is cut along the grid-lines into a number of
smaller square boards. Prove that the total length of the cuts is a
multiple of 4.

What about a 25× 25 checkerboard?

For which n is this true for an n× n checkerboard?

Is this true, for example, for n even?
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2.4 Can Robert stop Kayley?

This problem is adapted from Klee, S., Malkin, K. & Pevtsova, J.
(2021). Math Out Loud: An Oral Olympiad Handbook (Vol. 27).
American Mathematical Society:

Two players, Kayley and Robert take turns in making and erasing
“X” marks on an infinite tape of squares, as follows:

1. Kayley goes first, and at each turn marks 2 of the squares of the
tape (not necessarily adjacent) with an “X”

2. Robert takes turns after Kayley and can erase any block of ad-
jacent X’s

What length blocks of adjacent X’s can Kayley make without being
stopped by Robert?

In the picture below there are blocks of length 1, 2 and 4 of adjacent
X’s:
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2.5 Wrapping a string around a polygon

A string, 10 units longer than the perimeter of a polygon, is wrapped
around the polygon to make a similar polygon with a gap of uniform
size between the two perimeters.

In terms of the area and the perimeter of the original polygon, how
big is the gap?

Here is a picture for the case of a triangle:

Does it make difference if the polygon is, or is not, convex?

Thanks to James Tanton for this problem.
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2.6 Tiling with tetrominos

This problem is from James Propp.

Figure 2: James Propp

An Aztec diamond of order n is

“a region composed of 2n(n+ 1) unit squares, arranged as
a stack of 2n centered rows of squares, with the kth row
having length min(2k, 4n− 2k + 2)”

Jockusch, W., Propp, J., & Shor, P. (1998). Random domino tilings
and the arctic circle theorem
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Figure 3: Aztec diamond of order 4

We are going to try to tile Aztec diamonds with tetrominos.

The 5 different tetrominos are:

Figure 4: The 5 distinct tetrominos
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Here is a tiling of the Aztec diamond of order 3 by tetrominos:

Figure 5: Aztec diamond of order 3 tiled by tetrominos

For which values of n can an Aztec diamond of order n be tiled by
the first two tetrominos to the left of Figure 4 (the tetrominos shown
below)?

Another tiling problem: is it possible to tile a rectangle using all five
tetrominos?
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2.7 How many sixes from throwing a die many

times?

Imagine we throw a n dice all at once, and record how many 6s we see.

As a function of n,

• What is the probability of getting an even number of 6’s?

• What is the probability of getting an odd number of 6’s?

• What is the probability of getting a number of 6’s that leaves a
remainder of 0 (mod 3)?

• What is the probability of getting a number of 6’s that leaves a
remainder of 1 (mod 3)?

• What is the probability of getting a number of 6’s that leaves a
remainder of 2 (mod 3)?
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2.8 Subdividing a square into triangles

It is possible to divide a nine-by-nine grid of squares into 18 triangles
of equal area, each with a vertex at an intersection point on the grid:

Is it possible to divide the nine-by-nine grid of squares into an odd
number of triangles of equal area (with vertices at grid points)?

This problem is from James Tanton (@jamestanton on Twitter).

What about n × n grids? Does it make a difference if n is odd or
even?
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2.9 Arranging the numbers 1, 2, ... , 2n-1, 2n

In how many ways can one arrange the numbers 1, 2, 3, 4, 5, 6 and
respect the inequalities between adjacent terms as shown? (All in-
equalities are < except for the middle one.)

How about 1, 2, 3, 4, 5, 6, 7, 8? Or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10?

Thanks to James Tanton for this problem.
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2.10 Area of integer right triangles

Can you prove conclusively that the area of any right triangle with
integer side-lengths is sure to be a multiple of 6?

Thanks to James Tanton (@jamestanton on Twitter) for this problem.
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2.11 Pythagorean triples

If (a, b, c) is a Pythagorean triple - meaning a, b, c are positive integers
and a2 + b2 = c2 - can you prove conclusively that:

• at least one of a or b is sure to be divisible by 3

• at least one of a or b is sure to be divisible by 4, and

• at least one of a, b, or c is sure to be divisible by 5

?

Thanks to James Tanton (@jamestanton on Twitter) for this problem.
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2.12 Inscribed circles in integer right triangles

In the right triangle below, with side lengths 5, 12, 13, the largest
inscribed circle has integer radius:

Can you prove conclusively that the radius of the largest circle one can
draw inside any right triangle with integer side-lengths is sure to have
an integer radius?

Thanks to James Tanton (@jamestanton on Twitter) for this problem.
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2.13 Symmetries of the Petersen graph

The Petersen graph is the following graph with 10 vertices and 15
edges:

We can label the vertices of the Petersen graph with pairs of integers
chosen from {1, 2, 3, 4, 5} so that two vertices are joined by an edge
if and only if their labels are disjoint (that is, have no numbers in
common):

23

https://en.wikipedia.org/wiki/Petersen_graph


A permutation of the set {1, 2, 3, 4, 5} is a rearrangement of that set.
There are 5! = 120 permutations of {1, 2, 3, 4, 5}.

Show that every permutation of {1, 2, 3, 4, 5} gives a symmetry of the
Petersen graph: each permutation maps the labels of a vertex to a
new label so that two vertices are joined by an edge if and only if the
permuted labels are joined by an edge.

Can you show there are no other symmetries of the Petersen graph?
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2.14 Quadrilaterals with an inscribed circle

A convex quadrilateral Q is constructed such that:

• Each of the 4 side lengths of Q is one of the integers 1, 2, 3. Note:
repetitions are allowed so some, or all, of the sides will be of equal
length.

• Q contains a circle tangent to each of the 4 sides.

How many such quadrilaterals are there, and what are their 4 side
lengths L1, L2, L3, L4?

What are the centers and radii of their inscribed circles?

What are the areas of the quadrilaterals?
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2.15 Features of elliptic curves

The set of points E := {(x, y) ∈ R2 : y2 − y = x3 − x} is an example
of an elliptic curve:

Find the red points and the red line - about which the curve is sym-
metric (why is the curve symmetric about that line?).
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The elliptic curve y2 + 2y = x3 − 10x + 25 is shown below - find the
indicated points on the curve:

27



2.16 How many increasing trees?

An “increasing tree” is a tree with n vertices, labelled 1, 2, ..., n, with
the root of the tree labelled “1”, such that the vertex labels are in-
creasing as we travel down the tree from the root:

Figure 6: An increasing tree on 9 vertices

For each natural number n, how many increasing trees with n vertices
are there?

Thanks to Per Alexandersson for this problem.
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2.17 The Calkin-Wilf tree

The Calkin-Wilf tree is a binary tree with root 1
1 and each entry a

b

branches into a left child a
a+b and right child a+b

b :

Figure 7: a
b has left child

a
a+b and right child a+b

b

The rational numbers a
b in the Calkin-Wilf tree occur in levels, where

level 0 is {1
1} and level n, for n ≥ 1, consits of the left and right children

of rational numbers in level n− 1:

Figure 8: Levels 0 through 4 of the Calkin-Wilf tree
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Can you prove the following about the Calkin-Wilf tree?

• For each entry a
b in the Calkin-Wilf tree, a ≥ 1, b ≥ 1 and the

greatest common divisor (GCD) of a and b is 1.

• Every rational number a
b with a ≥ 1, b ≥ 1 and GCD(a, b) = 1

occurs once and only once in the Calkin-Wilf tree.

• The list, left to right, of denominators in level n of the Calkin-
Wilf tree is the reverse of the numerators, left to right, in level
n.

• There are 2n terms in level n.

• The sum of the numerators (= the sum of the denominators) in
level n is 3n.

Investigate a formula for the average value of all terms in level n of
the Calkin-Wilf tree.
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2.18 Average of triangular numbers

The nth triangular number is T (n) = n×(n+1)
2 .

Figure 9: The first six triangular numbers

For which n is the average, 1
n

∑n
k=1 T (k), of the first n triangular num-

bers T (1), T (2), . . . , T (n) an integer?
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3 Investigations

3.1 An algorithm for a printing path

Suppose we have a collection of points in a plane, for example (but the
points might also be in 3-dimensional space):

A printing path on the collection of points consists of:

1. a point designated as “start”

2. a point designated as “end”

3. for each point other than the start and end, an arrow into that
point from another point, and an arrow out of that point to
another point

4. a arrow out of the start point to another point

5. an arrow into the end point from another point

32



6. the arrows do not cross or meet except at the specified points

In the language of directed graphs, a printing path on the points is a
plane directed graph with the points as vertices in which each vertex
has in-degree 1 and out-degree 1, except for the start point which has
in-degree 0 and out-degree 1, and the end point which has in-degree 1
and out-degree 0.

Can you devise an algorithm that, given the points, constructs a print-
ing path on the points? Is this always possible? Can you devise an
algorithm so that the total length of the arrows joining the points is
as small as possible?

Thanks to Alfa Heryudono for this problem.
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3.2 Investigating Mahler’s 3/2 problem

Kurt Mahler was a German born mathematician who, among other
appointments, spent many years as Professor of Mathematics at the
Institute for Advanced Studies, the Australian National University.
Mahler conjectured that for every real number x there is a positive
integer n such that the fractional part of x(32)

n is 1
2 or greater. This

problem is still unsolved.

Investigate for a specific real number - for example x = 1+
√
5

2 - and
for each natural number n, what is the least positive integer kn for
which the fractional part of xn(32)

kn ≥ 1
2 . In other words, we are as-

suming that for each of x, x2, x3, x4, . . . there will be a positive integer
kn for which the fractional part of xn(32)

kn ≥ 1
2 , and we want to com-

pute the first such kn given a power xn of x.

Is there some pattern? Can you make sense of, or explain, any pat-

terns you see? For example, for x = 1+
√
5

2 , below is a plot for each n
(horizontal axis) of the first kn (vertical axis) for which the fractional
part of xn(32)

kn ≥ 1
2 :
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3.3 Number of primes between successive Fibonacci

numbers

The nth Fibonacci number, denoted F (n) is defined recursively as:

• F (0) = 0

• F (1) = 1

• F (n) = F (n− 1) + F (n− 2) for n ≥ 2

Investigate how the number of primes between F (n) and F (n + 1),
inclusive, grows with n.

As a variant on this problem, Investigate how the number of primes
between the nth and (n+ 1)st, inclusive, Catalan numbers grows with
n.
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3.4 A prime coincidence?

Ciara had learned from her mathematics teacher about modular arith-
metic, and was especially intrigued by arithmetic in the set Zp =
{0, 1, 2, . . . , p− 1} for p a prime number.

Ciara was fascinated that it was possible to do division by non-zero
elements of Zp because, thanks to the fact that p is prime, for every
0 ̸= x ∈ Zp there is an “inverse” 0 ̸= y ∈ Zp for which xy ≡ 1(mod p).

Ciara wrote a computer program that, given a prime number p, would
print out the inverse of each non-zero element of Zp.

Being in a playful mood, Ciara calculated the difference between x and
inverse of x, mod p for each x ∈ Zp and then formed the sum of all
these numbers:
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The total of all x− inv(x) mod 13 is 65.

Ciara did these calculations for the first 25 odd primes p (primes other

than 2) and found that the total was always p(p−3)
2 :
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Could this be just a coincidence?

If not, why might it be true?
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3.5 Numbers with a factor having the same num-

ber of 1s, base 2

James Tanton (@jamestanton ) asked the following question on Twit-
ter, Wednesday, August 8, 2018:

“Which positive integers n have a factor k < n so that n and k have
the same number of 1s in binary?”

Is it obvious this is true for powers of 2?

What about prime numbers n?

And what about squares of primes?

As a variant, which positive integers n have a factor k < n so that
n and k have the same number of 0s in binary?
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3.6 Occurrences of the digit 2 in the base 3 ex-

pansion of powers of 2

The base 3 expansion of 28 = 256 is 100111, because

1× 35 + 0× 34 + 0× 33 + 1× 32 + 1× 31 + 1× 30 = 256

There is no digit“2” in the base 3 expansion of 28 = 256, and a famous
conjecture of Paul Erdös is that this is the last n for which 2n has no
digits 2 in its base 3 expansion: namely, Erdös conjectures that for all
n > 8, the base 3 expansion of 2n does contain the digit 2 at least once.

Can we be more quantitative about this? What does experiment sug-
gest is the average number of occurrences of the digit 2 in the base 2
expansion of 2n?

In other words, suppose we compute the number of occurrences of
the digit 2 in the base 3 expansion of 2k for all k ≤ n and form the
average of all those numbers. What is a good estimate of how that
average varies with n?
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3.7 Binary disjoints

For a positive integer n, call a positive integer k < n a binary disjoint
of n if the binary representations of k and n have no 1’s in common
places.

For example, 5 is a binary disjoint of 10 because 5 = 101 base 2,
and 10 = 1010 base 2: 5 has 1’s in the 20 and 22 places, while 10 has
1’s in the 21 and 23 places.

10 is the sum of its binary disjoints: 1, 4, 5. Is there any other positive
integer that is the sum of its binary disjoints?

James Tanton (@jamestanton) asked on Twitter on April 14, 2018,
which n are a multiple of each of their binary disjoints - are these just
the numbers of the form n = 2k − 2, or are there other such numbers?

Which n have only 1 as a binary disjoint?

Note that 9 and 25 have the same set of binary disjoints: 2, 4, 6.
Let’s call such a pair “binary disjoint friends”. What other pairs of
binary disjoint friends can you find?
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3.8 Probability random points are in convex po-

sition

Suppose that n points are chosen uniformly randomly and indepen-
dently from inside the square [0, 1]× [0, 1].

Figure 10: 4 uniformly random points in a square

The points are in convex position if each point is an extreme point of
the convex hull of all the points.

42

https://en.wikipedia.org/wiki/Extreme_point
https://en.wikipedia.org/wiki/Convex_hull


Figure 11: Convex hull of 4 uniformly random points in a

square

What is the probability, as a function of n, that n uniformly random
points in the square are in convex position ?
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3.9 Numerators of the fractional parts of powers

of 3/2

It is a famous long-standing problem whether the fractional parts of
(32)

n are uniformly distributed in the interval [0, 1].

If we denote by fp(x) the fractional part of a real number x, “uni-
formly distributed” means for all 0 ≤ a < b ≤ 1

#{k ≤ n : a ≤ fp((3/2)k) ≤ b}
n

→ b− a as n → ∞

This is a notoriously difficult problem on which mathematicians are
actively working.

What, however can you say about the behavior, or even the aver-
age behavior, of the numerators of the fractional parts of (32)

n?

The first 20 numerators are:

1, 1, 3, 1, 19, 25, 11, 161, 227, 681, 1019, 3057, 5075, 15225, 29291,
55105, 34243, 233801, 439259, 269201
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4 Unsolved problems

Remember that as challenging and intriguing as you may find these
problems they are mostly problems that several, if not many, profes-
sional mathematicians have thought about long and hard and have not
yet been able to resolve. While it’s sensible to be aware of these un-
solved problems, and perhaps to think for a short time what the prob-
lem entails, it is generally not a wise move to spend a long time thinking
about these hard unsolved problems simply because the chance of solv-
ing them is very low, and time spent on them means time taken away
from other potentially solvable problems.

4.1 How often does each positive integer occur in

Pascal’s triangle?

The number 1 clearly occurs infinitely often in Pascal’s triangle. How-
ever integers n > 1 occur only a finite number of times.

Can you devise ways of calculating for any given integer n > 1 how
often n occurs in Pascal’s triangle?
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https://bit.ly/3JbSX0J


A famous conjecture of David Singmaster is that there is a number
N such that every integer n > 1 occurs no more than N times in Pas-
cal’s triangle.

So far no one has found an n > 1 that occurs more than 8 times
in Pascal’s triangle (so maybe N = 8?).
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https://bit.ly/3r43Ify


4.2 A prime between successive powers of an in-

teger ?

Samantha had heard about a famous unsolved problem: that there is
always a prime number between n2 and (n+ 1)2, for all natural num-
bers n.

Being a quantitative data-oriented person, Samantha did some cal-
culations and came up with a stronger thought: “It seems to me”, said
Samantha, “on the basis of calculational evidence, that the number of
primes between n2 and (n+ 1)2 is always greater than n

9”.

Could Samantha be right?

What does experiment suggest is the average number of primes be-
tween n2 and (n+1)2? In other words, suppose we compute the num-
ber of primes between k2 and (k + 1)2? for all k ≤ n and form the
average of all those numbers. What is a good estimate of how that
average varies with n?
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https://bit.ly/3u0t2ES


4.3 Is there a polyomino or order 5?

A polyomino is a connected collection of squares each of which is con-
nected to another square along an entire edge:

Figure 12: Polyominos constructed from 4 squares

The order of a polyomino is the minimum number of copies of the
polyomino that can tile a rectangle (assuming that can be done).

There are polyominos of order 4:
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https://en.wikipedia.org/wiki/Polyomino
https://bit.ly/3DRx2L6


Figure 13: A rectangle tiled by 4 copies of a polyomino, no

fewer copies of which tile a rectangle

There is no polyomino of order 3.

Is there a polyomino of order 5?
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https://bit.ly/3xbCQOj


4.4 Runs of 0s in the binary expansion of the

square root of 2

A problem of Paul Erdös asks if there are there arbitrarily long se-
quences of 0’s in the binary expansion of

√
2.
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https://en.wikipedia.org/wiki/Paul_Erd\unhbox \voidb@x \bgroup \accent 127o\protect \penalty \@M \hskip \z@skip \egroup s


4.5 Erdös–Straus conjecture

Is it true that for every positive integer n there are positive integers
a, b, c such that

4

n
=

1

a
+

1

b
+

1

c

See here for more details.

51

http://en.wikipedia.org/wiki/Erdos\OT1\textendash Straus_ conjecture


4.6 Catalan pseudo-primes

Are there any Catalan pseudo-primes other than 5907, 1194649, and
12327121?

See the original article that defined and discovered Catalan pseudo-
primes:

Aebi, Christian, and Grant Cairns. Catalan numbers, primes, and
twin primes. Elemente der Mathematik 63, no. 4 (2008): 153-164.
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https://en.wikipedia.org/wiki/Catalan_pseudoprime
https://bit.ly/3LJHaIQ
https://bit.ly/3LJHaIQ


4.7 Cycles in cubic graphs

A connected graph is cubic if all its vertices have degree 3.

Figure 14: A cubic graph

A special case of the Erdős–Gyárfás conjecture is that every cubic
graph contains a cycle of length a power of 2.

The cubic graph shown above has no cycles of length 2,4 or 8, but
does have cycles of length 16:
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Figure 15: A cycle of length 24 = 16, shown red
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4.8 How many factorials modulo a prime?

For a non-negative integer n the factorial n! is defined inductively as:

• 0! = 1

• n! = n× (n− 1)!

It is an open problem to determine, for all prime numbers p, the size
of the set

A(p) := {k!(mod p) : k = 0, 1, . . . , p− 1}

For example, for p = 13

A(p) = A(13) = {1, 2, 3, 5, 6, 7, 9, 11, 12}

which has size 9.

Investigate how the size of A(p) varies with the prime p.

Also try to estimate the average value of A(p) - that is, for a given
prime p, calculate the size of A(k) for primes k ≤ p and average those
values. Estimate how that average varies with p.
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https://arxiv.org/pdf/2204.01153.pdf
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