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1 Introduction

In this document we have collected problems from combinatorics, com-
binatorial number theory, computational number theory, and geometry
that are hopefully understandable, engaging and challenging for High
School students and mathematics undergraduates and, with the excep-
tion of the unsolved problems, do-able by them.

Our main aim in collecting and presenting these problems is to provide
students with a fun collection: problems that stimulate and challenge
their mathematical thinking, and are fun to work on.

1.1 Several flavors of problems

These problems tend to come in several distinct “flavors”. One flavor
consists of curious, often tantalizing, yet somewhat contrived, puzzles.
These are often engaging, fun to work on, and sometimes offer beautiful
insights. Working on these problems can be very satisfying and great
fun.

Another flavor consists of investigations, in which there is not a single
clearly stated problem, but instead a proposed investigation of some
curious phenomenon.

Thirdly, another, generally very hard, flavor of problems consists of
unsolved problems. These are mostly problems that several, if not
many, professional mathematicians have thought about long and hard
and have not yet been able to resolve. While it’s sensible to be aware
of these unsolved problems, and perhaps to think for a short time what
the problem entails, it is generally not a wise move to spend a long
time thinking about these hard unsolved problems simply because the
chance of solving them is very low, and time spent on them means
time taken away from other potentially solvable problems.
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Fourthly, we have added a favor of approachable research problems.
These are problems that are relatively easy to explain and understand,
for which no-one at the time of writing knows an answer, but are
approachable and potentially solvable by adaptable students.

Another flavor, which we will into go into in detail here consists of prob-
lems that come from other branches of mathematics. For example, in
graph theory, a fundamental problem is how many essentially different
graphs there are with a given number of vertices. For example, here
are the 4 essentially different graphs with 3 vertices:

Counting, or “enumerating”, the number of essentially different graphs
with n vertices is a fundamental problem in graph theory and utilizes
a method known as Polya-Burnside enumeration.

1.2 Software for computation

Occasionally you might need, or want to, use mathematical software
to carry out computations. Two open source software packages for this
purpose are:

1. SageMath

2. Geogebra
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1.3 New delights and unexpected connections

As you peruse these problems and investigations bear in mind the
words of the late, great Bill Thurston,

Figure 1: William P. Thurston

who wrote:

“Mathematics has a remarkable beauty, power, and coher-
ence, more than we could have ever expected. It is always
changing, as we turn new corners and discover new delights
and unexpected connections with old familiar grounds.”

As you engage with a problem, and potentially get stuck and confused,
bear in mind some other helpful words from Bill Thurston:
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“Mathematics is a process of staring hard enough with
enough perseverance at the fog of muddle and confusion to
eventually break through to improved clarity. I’m happy
when I can admit, at least to myself, that my thinking is
muddled, and I try to overcome the embarrassment that
I might reveal ignorance or confusion. Over the years,
this has helped me develop clarity in some things, but I
remain muddled in many others. I enjoy questions that
seem honest, even when they admit or reveal confusion,
in preference to questions that appear designed to project
sophistication.”
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1.4 Acknowledgements

A major stimulus and source of inspiration for us in compiling this list
of mathematical problems for High School students and undergradu-
ates, has been Dr. James Tanton (On Twitter: @jamestanton)

and you will see numerous acknowledgements to James on individual
problems, where he contributed either the whole problem itself, or the
stimulus for us to enlarge an original idea of his.
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2 Curious, tantalizing puzzles

2.1 Coloring a square grid

This problem is from Klee, S., Malkin, K. & Pevtsova, J. (2021). Math
Out Loud: An Oral Olympiad Handbook (Vol. 27). American Mathe-
matical Society, and was posted on Twitter by James Tanton (@james-
tanton):

Draw a path of horizontal and vertical steps from the top left corner to
the bottom right corner of an n× n grid. If step 1 is horizontal, color
all cells below it, turn 90 degrees, color rightward all squares back to
the path. If step 1 is vertical, go rightward, then down. Do this for
the first n steps. Is the whole grid sure to be colored?
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https://www.amazon.com/Math-Out-Loud-Olympiad-Mathematical/dp/1470466937
https://www.amazon.com/Math-Out-Loud-Olympiad-Mathematical/dp/1470466937
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2.2 Which integer sequences are possible?

(1) Sequences a0, a1, a2, a3, . . . of non-negative integers an are con-
structed subject to the following constraints:

• a0 = 0

• a1 = 1

• for all n ≥ 1, an = ⌊an−1+an+1

2 ⌋, where for a real number x, ⌊x⌋ is
the floor of x: the greatest integer less than, or equal to, x.

What are the possible integer sequences that satisfy these constraints?

Thanks to James Tanton (@jamestanton on Twitter) for this idea.

(2) As a variant, investigate and characterize positive integer sequences
a1, a2, a3, . . . constructed subject to the following constraints:

• a1 = 1

• a2 = 1

• for all n ≥ 1, an = ⌊√an−1 ∗ an+1⌋, where, as before, for a real
number x, ⌊x⌋ is the floor of x: the greatest integer less than, or
equal to, x.
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2.3 Cutting a checker board

This problem is adapted from Klee, S., Malkin, K. & Pevtsova, J.
(2021). Math Out Loud: An Oral Olympiad Handbook (Vol. 27).
American Mathematical Society:

A 5×5 checkerboard is cut along the grid-lines into a number of smaller
square boards. Prove that the total length of the cuts is a multiple of
4.

What about a 25× 25 checkerboard?

For which n is this true for an n× n checkerboard?

Is this true, for example, for n even?
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2.4 Can Robert stop Kayley?

This problem is adapted from Klee, S., Malkin, K. & Pevtsova, J.
(2021). Math Out Loud: An Oral Olympiad Handbook (Vol. 27).
American Mathematical Society:

Two players, Kayley and Robert take turns in making and erasing “X”
marks on an infinite tape of squares, as follows:

1. Kayley goes first, and at each turn marks 2 of the squares of the
tape (not necessarily adjacent) with an “X”

2. Robert takes turns after Kayley and can erase any block of ad-
jacent X’s

What length blocks of adjacent X’s can Kayley make without being
stopped by Robert?

In the picture below there are blocks of length 1, 2 and 4 of adjacent
X’s:
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2.5 Wrapping a string around a polygon

A string, 10 units longer than the perimeter of a polygon, is wrapped
around the polygon to make a similar polygon with a gap of uniform
size between the two perimeters.

In terms of the area and the perimeter of the original polygon, how
big is the gap?

Here is a picture for the case of a triangle:

Does it make difference if the polygon is, or is not, convex?

For each convex polygon P define a number h(P ) as follows:

as above, wrap a string of length perimeter(P )+10 around
P, maintaining a uniform perpendicular gap size, h(P ).
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Call two convex polygons P1, P2 gap-equivalent if h(P1) = h(P2)

• Are all rectangles gap-equivalent?

• Are all right triangles gap-equivalent?

• Are similar polygons gap-equivalent?

Thanks for these problems goes to James Tanton who raises an inter-
esting question:

For a convex polygon P with perimeter p and area A, is P tangential
- that is, P has an inscribed circle - if and only if h(P ) = 20A/p2 ?
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https://twitter.com/jamestanton/status/1513454056043388933
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2.6 Covering a polygon by a disk

Define the “length” of a polygon to be the sum of the lengths of all its
edges.

In terms of the length, L, of a polygon P, what is the radius of a
smallest disk that entirely covers P?

Thanks to Igor Pak for this problem.
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2.7 Tiling with tetrominos

This problem is from James Propp.

Figure 2: James Propp

An Aztec diamond of order n is

“a region composed of 2n(n+ 1) unit squares, arranged as
a stack of 2n centered rows of squares, with the kth row
having length min(2k, 4n− 2k + 2)”

Jockusch, W., Propp, J., & Shor, P. (1998). Random domino tilings
and the arctic circle theorem

Figure 3: Aztec diamond of order 4

17

https://arxiv.org/pdf/2204.00158.pdf
https://en.wikipedia.org/wiki/Aztec_diamond
https://arxiv.org/pdf/math/9801068.pdf
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We are going to try to tile Aztec diamonds with tetrominos.

The 5 different tetrominos are:

Figure 4: The 5 distinct tetrominos
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Here is a tiling of the Aztec diamond of order 3 by tetrominos:

Figure 5: Aztec diamond of order 3 tiled by tetrominos

For which values of n can an Aztec diamond of order n be tiled by
the first two tetrominos to the left of Figure 4 (the tetrominos shown
below)?

Another tiling problem: is it possible to tile a rectangle using all five
tetrominos?
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2.8 Grid walks

On the 7× 7 grid shown below:

a walk from a START square of the grid, consists of a sequence of
squares of the grid, beginning with START, and where each succeeding
square is adjacent, horizontally or vertically, to the preceding square
in the sequence:

The walk shown above passes through each square of the grid once and
only once.
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From the START square shown below, is it possible to walk so as to
reach each square of the grid once and only once. If so, show how, and
if not, explain why not:

From which squares of the 7× 7 grid is it possible to start a walk that
reaches each square of the grid once and only once?

What if the 7 × 7 grid is replaced by an n × n grid for some other
integer n?

Thanks to James Tanton for opening our eyes to this problem - watch
James introduce it with Sunil Singh on YouTube.
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2.9 Subdividing a square into triangles

It is possible to divide a nine-by-nine grid of squares into 18 triangles
of equal area, each with a vertex at an intersection point on the grid:

Is it possible to divide the nine-by-nine grid of squares into an odd
number of triangles of equal area (with vertices at grid points)?

This problem is from James Tanton (@jamestanton on Twitter).

What about n×n grids? Does it make a difference if n is odd or even?
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2.10 Area of integer right triangles

Can you prove conclusively that the area of any right triangle with
integer side-lengths is sure to be a multiple of 6?
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2.11 Arranging the numbers 1, 2, ... , 2n-1, 2n

In how many ways can one arrange the numbers 1, 2, 3, 4, 5, 6 and
respect the inequalities between adjacent terms as shown? (All in-
equalities are < except for the middle one.)

How about 1, 2, 3, 4, 5, 6, 7, 8? Or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10?

Thanks to James Tanton for this problem.
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2.12 How many sixes from throwing many dice?

Imagine we throw n dice all at once, and record how many 6’s we see.

As a function of n,

• What is the probability of getting an even number of 6’s?

• What is the probability of getting an odd number of 6’s?

• What is the probability of getting a number of 6’s that leaves a
remainder of 0 (mod 3)?

• What is the probability of getting a number of 6’s that leaves a
remainder of 1 (mod 3)?

• What is the probability of getting a number of 6’s that leaves a
remainder of 2 (mod 3)?

Thanks to James Tanton for this problem.
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2.13 Pythagorean triples

If (a, b, c) is a Pythagorean triple - meaning a, b, c are positive integers
and a2 + b2 = c2 - can you prove conclusively that:

• at least one of a or b is sure to be divisible by 3

• at least one of a or b is sure to be divisible by 4, and

• at least one of a, b, or c is sure to be divisible by 5

?

Thanks to James Tanton (@jamestanton on Twitter) for this problem.
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2.14 Inscribed circles in integer right triangles

In the right triangle below, with side lengths 5, 12, 13, the largest
inscribed circle has integer radius:

Can you prove conclusively that the radius of the largest circle one can
draw inside any right triangle with integer side-lengths is sure to have
an integer radius?

Thanks to James Tanton (@jamestanton on Twitter) for this problem.
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2.15 Integer values of a quadratic

A quadratic q(x) = ax2 + bx + c has integer outputs for 3 distinct
integer inputs. Must q(x), in fact, be an integer for 4 integer inputs
x? 5 integer inputs? Infinitely many integer inputs?

Thanks to James Tanton for this problem.
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2.16 Symmetries of the Petersen graph

The Petersen graph is the following graph with 10 vertices and 15
edges:

We can label the vertices of the Petersen graph with pairs of integers
chosen from {1, 2, 3, 4, 5} so that two vertices are joined by an edge
if and only if their labels are disjoint (that is, have no numbers in
common):

29

https://en.wikipedia.org/wiki/Petersen_graph


A permutation of the set {1, 2, 3, 4, 5} is a rearrangement of that set.
There are 5! = 120 permutations of {1, 2, 3, 4, 5}.

Show that every permutation of {1, 2, 3, 4, 5} gives a symmetry of the
Petersen graph: each permutation maps the labels of a vertex to a
new label so that two vertices are joined by an edge if and only if the
permuted labels are joined by an edge.

Can you show there are no other symmetries of the Petersen graph?
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2.17 Quadrilaterals with an inscribed circle

A convex quadrilateral Q is constructed such that:

• Each of the 4 side lengths of Q is one of the integers 1, 2, 3. Note:
repetitions are allowed so some, or all, of the sides will be of equal
length.

• Q contains a circle tangent to each of the 4 sides.

How many such quadrilaterals are there, and what are their 4 side
lengths L1, L2, L3, L4?

What are the centers and radii of their inscribed circles?

What are the areas of the quadrilaterals?
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2.18 Features of elliptic curves

The set of points E := {(x, y) ∈ R2 : y2 − y = x3 − x} is an example
of an elliptic curve:

Find the red points and the red line - about which the curve is sym-
metric (why is the curve symmetric about that line?).
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The elliptic curve y2 + 2y = x3 − 10x + 25 is shown below - find the
indicated points on the curve:

A basic issue in the theory of elliptic curves is to find all points (x, y)
on an elliptic curve such that both x, y are integers - so-called “integer
points”. Can you find all the integer points on the above two elliptic
curves?

The Elliptic Curve Plotter is a graphical application that illustrates
elliptic curves. Users can sketch elliptic curves and experiment with
their group law, and save images in PNG or SVG format for later use.
Thanks to Adam Hausknecht for information about the elliptic curve
plotter.
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2.19 How many increasing trees?

An “increasing tree” is a tree with n vertices, labelled 1, 2, ..., n,
with the root of the tree labelled “1”, such that the vertex labels are
increasing as we travel down the tree from the root:

Figure 6: An increasing tree on 9 vertices

For each natural number n, how many increasing trees with n vertices
are there?

Thanks to Per Alexandersson for this problem.

34

https://en.wikipedia.org/wiki/Tree_(graph_theory)
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2.20 The Calkin-Wilf tree

The Calkin-Wilf tree is a binary tree with root 1
1 and each entry a

b

branches into a left child a
a+b and right child a+b

b :

Figure 7: a
b has left child a

a+b and right child a+b
b

The rational numbers a
b in the Calkin-Wilf tree occur in levels, where

level 0 is {1
1} and level n, for n ≥ 1, consits of the left and right children

of rational numbers in level n− 1:

Figure 8: Levels 0 through 4 of the Calkin-Wilf tree

Can you prove the following about the Calkin-Wilf tree?
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• For each entry a
b in the Calkin-Wilf tree, a ≥ 1, b ≥ 1 and the

greatest common divisor (GCD) of a and b is 1.

• Every rational number a
b with a ≥ 1, b ≥ 1 and GCD(a, b) = 1

occurs once and only once in the Calkin-Wilf tree.

• The list, left to right, of denominators in level n of the Calkin-
Wilf tree is the reverse of the numerators, left to right, in level
n.

• There are 2n terms in level n.

• The sum of the numerators (= the sum of the denominators) in
level n is 3n.

Investigate a formula for the average value of all terms in level n of
the Calkin-Wilf tree.
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2.21 Average of triangular numbers

The nth triangular number is T (n) = n×(n+1)
2 .

Figure 9: The first six triangular numbers

For which n is the average, 1
n

∑n
k=1 T (k), of the first n triangular num-

bers T (1), T (2), . . . , T (n) an integer?
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2.22 Average of Stirling numbers

The unsigned Stirling number of the first kind, denoted S(n, k) where
0 ≤ k ≤ n, can be defined recursively as follows:

• S(0, 0) = 1

• S(0, n) = 0 = S(n, 0)

• S(n, k) = (n− 1)S(n− 1, k) + S(n− 1, k − 1) for n ≥ 1

Below is a table of S(n, k) for 0 ≤ n ≤ 10:
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For n ≥ 1 let A(n) denote the average, 1
n

∑n
k=1 S(n, k), of the Stirling

numbers S(n, 1), S(n, 2), . . . , S(n, n).

Is A(n) always an integer?

Formulate, and try to prove, a formula for A(n) as a function of n.
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2.23 Infinitely many 3’s in this sequence?

In a Twitter post, James Tanton (@jamestanton) defined the sequence

s(0), s(1), s(2), s(3), s(4), . . .

as follows:

• s(0) = 0

• s(2n+ 1) = 0

• s(2n) = 3s(n) + s(n− 1)

for n ≥ 1, and asked: is s(n) = 3 for infinitely many n?

The first 100 values of s(n) are:

0, 1, 3, 0, 10, 0, 3, 0, 30, 0, 10, 0, 9, 0, 3, 0, 90, 0, 30, 0, 30, 0, 10, 0,
27, 0, 9, 0, 9, 0, 3, 0, 270, 0, 90, 0, 90, 0, 30, 0, 90, 0, 30, 0, 30, 0, 10,
0, 81, 0, 27, 0, 27, 0, 9, 0, 27, 0, 9, 0, 9, 0, 3, 0, 810, 0, 270, 0, 270, 0,
90, 0, 270, 0, 90, 0, 90, 0, 30, 0, 270, 0, 90, 0, 90, 0, 30, 0, 90, 0, 30, 0,
30, 0, 10, 0, 243, 0, 81, 0, 8
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2.24 Sum of squares of consecutive integers

We know that 32 + 42 = 52.

What is probably not so well known is that 202 + 212 = 292.

For which other positive integers n is it true that n2 + (n + 1)2 is the
square of a positive integer?

Is there some way to recursively determine such positive integers n?
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2.25 A prime coincidence?

Ciara had learned from her mathematics teacher about modular arith-
metic, and was especially intrigued by arithmetic in the set Zp =
{0, 1, 2, . . . , p− 1} for p a prime number.

Ciara was fascinated that it was possible to do division by non-zero
elements of Zp because, thanks to the fact that p is prime, for every
0 ̸= x ∈ Zp there is an “inverse” 0 ̸= y ∈ Zp for which xy ≡ 1(mod p).

Ciara wrote a computer program that, given a prime number p, would
print out the inverse of each non-zero element of Zp.

Being in a playful mood, Ciara calculated the difference between x and
inverse of x, mod p for each x ∈ Zp and then formed the sum of all
these numbers:
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The total of all x− inv(x) mod 13 is 65.

Ciara did these calculations for the first 25 odd primes p (primes other

than 2) and found that the total was always p(p−3)
2 :
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Could this be just a coincidence?

If not, why might it be true?
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2.26 Lines dividing a circular disk into regions

In the picture shown below, 6 points are arranged regularly around
a circle - going anti-clockwise around the circle, the distance between
one point and the next is always the same:

When each pair of points is joined by a line, the lines divide the circular
disk into 30 regions (count them!).

Yet, we can place 6 points a little irregularly around the circle and
when lines are drawn between all distinct pairs of points we might get
the lines dividing the circular disk into 31 regions (count them!):
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Can you prove that 31 is the maximum number of regions we can get
by joining lines between 6 points on the circle?

Investigate the difference between the number of regions for regu-
larly spaced points, and the maximum number of regions, for n =
1, 2, 3, 4, 5, 6, 7, 8, 9, . . . points.

Can you prove that the the number of regions for regularly spaced
points, and the maximum number of regions, is the same for n = 2, 4
or any odd number?
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2.27 Five points on a cube

Five points p1, p2, p3, p4, p5 are placed on the surface of a cube with side
length 1:

D(pi, pj) is the distance, as measured along the surface of the cube
between points pi ̸= pj.

Denote by δ the minimum of the distances D(pi, pj) for pi ̸= pj:

δ = min{D(pi, pj) : 1 ≤ pi ̸= pj ≤ 5}

What is the maximum value of δ as the points p1, p2, p3, p4, p5 vary over
the surface of the cube?

Thanks to James Tanton for this problem
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2.28 Four points in the plane

There are four points in the plane. The smallest distance between a
pair of points is 1 unit. The largest distance between a pair of points
is x units.

Of course, x can be quite large as the next picture indicates:
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What’s the smallest possible value of x?

Thanks to James Tanton for this problem

What if the 4 points were on a sphere of radius n and we measure
distance on the surface of the sphere?
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2.29 Tiling a square by rectangles

Can a 6× 6 square grid, shown below:

be tiled by (nine) 4× 1 rectangles:

If so, how?

And if not, why not?
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2.30 Incircle of a right triangle

A right triangle with integer side lengths a, b, c as shown below has
a+b-c an even number. (Why is that?)

The radius r of its incircle is this even number divided by two. (Why
is that?)

The 3-4-5 triangle has r=1; the 5-12-13 has r=2.

For each integer n, is there a primitive right triangle with r=n?

Thanks to James Tanton for this problem.
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2.31 Coloring squares in a long, thin rectangular

grid

Imagine a 2 × n rectangular grid of squares, in which the maximum
possible number of squares are colored so that no two colored squares
touch, not even at the corners:

How does the maximum number of colored squares depend on n?

Thanks to James Tanton for this problem.

How would your answer differ for 3× n rectangular grids?
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2.32 Coloring squares in a square grid

As a variant on the preceding problem of coloring squares in a long thin
rectangle, James Tanton asks for the maximum number of squares that
can be colored in an n×n grid of squares so that no two colored squares
touch, not even at a corner:

Figure 10: Is 7 the maximum number of colored squares that can be
placed in a 6× 6 grid?
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2.33 Circumscribed and inscribed circles of a tri-

angle

The circumscribed circle of a triangle is a circle that passes through
all the vertices of the triangle.

The inscribed circle of a triangle is the largest circle contained in the
triangle.

Suppose a right triangle has circumscribed circle of diameter D, and
inscribed circle of diameter d.

• Show that d +D = a + b where a, b are the lengths of the non-
hypotenuse sides of the triangle.

• Does the previous property characterize right triangles? That
is, if a triangle has d + D = a + b for two of the side lengths
a, b is the triangle necessarily a right triangle (with hypotenuse
c =

√
a2 + b2), or could there be a non-right triangle with this

property?

Thanks to James Tanton for this problem.
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2.34 Squiggly sine and squiggly cosine

Shown in the picture below is a plot of

{(x, y) : |x|+ |y| = 1}

As the red radius vector travels from the horizontal axis anti-clockwise
around the closed loop, we define the squiggly sin, sqsin(θ), of the angle
θ the radius vector makes with the horizontal axis to be the projection
of the radius vector onto the vertical axis. Similarly, we define the
squiggly cosine, sqcos(θ), to be the projection onto the horizontal axis.
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The functions sqsin(θ) and sqcos(θ) are clearly periodic: what do their
graphs look like?

Is there an algebraic formula connecting sqsin(θ) and sqcos(θ)?

Let’s define the squiggly tangent to be sqtan(θ) = sqsin(θ)/sqcos(θ)
when sqcos(θ) ̸= 0.

What does the graph of sqtan(θ) look like?

Try this again, this time replacing {(x, y) : |x| + |y| = 1} with the
closed loop in the graph of y2 = x3 − 3x2/2− 5x/4 + 15/8 :

Thanks to James Tanton for the germ of this idea.
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3 Investigations

3.1 Polynomials with odd integer coefficients and

integer roots

There is no polynomial p(x) := ax2 + bx + c of degree 2 in which the
coefficients a, b, c are all odd integers, and p crosses the x-axis at 2
distinct integer points.

Why is that?

However there is a polynomial p(x) := ax3 + bx2 + cx + d of degree 3
in which the coefficients a, b, c, d are all odd integers, and p crosses the
x-axis at 3 distinct integer points. For example,

p(x) := x3 − 9x2 + 23x− 15

crosses the x-axis at x = 1, 3, 5.

Figure 11: Plot of x3 − 9x2 + 23x− 15
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Investigate for which positive integers n there is a polynomial

p(x) := anx
n + an−1x

n−1 + . . .+ a1x+ a0

of degree n in which the coefficients an, an−1, . . . , a1, a0 are all odd
integers, and p crosses the x-axis at n distinct integer points.

Thanks to James Tanton for this problem.
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3.2 Area of squares on the side of a quadrilateral

For the squares on the sides of a right triangle of areas A, B, C (non-
decreasing magnitude)we have A+B = C (Pythagorean theorem)

Investigate quadrilaterals such that for the squares on its sides, with
areas A, B, C, D (non-decreasing) we have A+B+C=D

Thanks to James Tanton for this problem and Dean Ballard for the
quadrilateral picture.
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3.3 Even numbers in Pascal’s triangle

As we move down the rows of Pascal’s triangle, even numbers seem to
appear in a not entirely predictable way:

The table below shows the proportion of even numbers up to and
including row n for n = 0, . . . , 15:

60

https://bit.ly/3Nus1eX


Investigate the pattern of occurrences of even numbers as you move
down the rows of Pascal’s triangle.

Investigate if and how the proportion of even numbers up to and includ-
ing row n behaves as a function of n. Does this proportion approach
a limiting value as n increases?

Thanks to Matt Enlow for this problem
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3.4 Ant walks

An ant walks along the trail system shown:

When the ant gets to an L node, it turns left and changes L to an R.
When the ant gets to an R node, it turns right and changes R to an L.

Does the ant visit each node?

For which initial pattern of Ls & Rs does the ant not visit each node?

The trail system shown us an example of a labeled connected graph:
the graph is connected because it is possible to travel form any node
to any other node along a path of edges; it is labeled because each
node has either a “L” label or a “R” label. Explore which well known
connected graphs can be labeled with Ls and Rs so that the ant can
visit each node of the graph, turning left at L nodes and changing them
to R, and vice versa with R nodes.

Thanks to James Tanton for this problem, who created it in honor of
Christopher Langton.
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3.5 Number of digits in powers of 2

The number of digits in 2n for 1 ≤ n ≤ 30 is shown in the table below:

You can see there are 3 occurrences of powers of 2 with 1 digits, 3
occurrences with 2 digits, 3 occurrences with 3 digits and 4 occurrences
with 4 digits.

Also, each number of digits seems to occur only either 3 or 4 times:

Does a given number of digits only occur either 3 or 4 times?
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Do the 3’s and 4’s go on alternating, or is it all 3’s or all 4’s from some
point on?

Is there some discernible pattern to the occurrences of 3’s and 4’s?
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3.6 Similarity of an outer polygon?

For a convex polygon P, produce line segments 1 unit outside each edge
of the polygon to create a new polygon Q:

When is this outer polygon Q similar to the polygon P?

Thanks to James Tanton for this problem.

65

https://twitter.com/jamestanton/status/1525029076737462272


3.7 Polygonal problems

Define Π for a convex polygon to be sum of the areas of the shaded
regions shown in the figure below:

What is the value of Π for a regular n-gon?

As n increases, dos Π converge to a limit?

What if the polygon is is not regular?

Suppose a convex polygon has area A, perimeter P , and Π value as
shown above.

If the polygon circumscribes a circle of radius 1, show that:
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• A = Π

• P = 2Π

Is the converse true: If A = Π and P = 2Π must the polygon circum-
scribe a circle of radius 1?

Thanks to James Tanton for these problems.
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3.8 π-values and the Koch snowflake

For a polygon P James Tanton defines a “pi-value” π(P ) as

π(P ) :=
L2

4A

where L is the sum of the lengths of the edges of P (the perimeter of
P ) and A is the area of P .

In the video referenced he defines pi-values for more general figures
(technically, those bounded regions with a well-defined area, whose
boundary is a simple closed curve with a well-defined length) but we
will only use his pi-values idea here for polygons.

The Koch Snowflake K is constructed as the limit of a sequence of
polygonal perimeters Kn:

K1 is an equilateral triangle with side lengths 1:
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Kn+1 is obtained from Kn by replacing each straight line segment in
the perimeter of Kn by a “bent” piece as follows:

Each line segment is divided into thirds and the two legs of a smaller
equilateral triangle are constructed on the, then deleted, middle third
of the original line segment.

The first 4 stages, K1 through K4, of the construction of the Koch
snowflake are shown below:

Figure 12: K1 through K4

Investigate the pi-values π(Kn) and how they vary with n.
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3.9 An algorithm for a printing path

Suppose we have a collection of points in a plane, for example (but the
points might also be in 3-dimensional space):

A printing path on the collection of points consists of:

1. a point designated as “start”

2. a point designated as “end”

3. for each point other than the start and end, an arrow into that
point from another point, and an arrow out of that point to
another point

4. a arrow out of the start point to another point

5. an arrow into the end point from another point

6. the arrows do not cross or meet except at the specified points

In the language of directed graphs, a printing path on the points is a
plane directed graph with the points as vertices in which each vertex
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has in-degree 1 and out-degree 1, except for the start point which has
in-degree 0 and out-degree 1, and the end point which has in-degree 1
and out-degree 0.

Can you devise an algorithm that, given the points, constructs a print-
ing path on the points? Is this always possible? Can you devise an
algorithm so that the total length of the arrows joining the points is
as small as possible?

Thanks to Alfa Heryudono for this problem.
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3.10 Investigating Mahler’s 3/2 problem

Kurt Mahler was a German born mathematician who, among other
appointments, spent many years as Professor of Mathematics at the
Institute for Advanced Studies, the Australian National University.
Mahler conjectured that for every real number x there is a positive
integer n such that the fractional part of x(32)

n is 1
2 or greater. This

problem is still unsolved.

Investigate for a specific real number - for example x = 1+
√
5

2 - and for
each natural number n, what is the least positive integer kn for which
the fractional part of xn(32)

kn ≥ 1
2 . In other words, we are assuming

that for each of x, x2, x3, x4, . . . there will be a positive integer kn for
which the fractional part of xn(32)

kn ≥ 1
2 , and we want to compute the

first such kn given a power xn of x.

Is there some pattern? Can you make sense of, or explain, any pat-

terns you see? For example, for x = 1+
√
5

2 , below is a plot for each n
(horizontal axis) of the first kn (vertical axis) for which the fractional
part of xn(32)

kn ≥ 1
2 :
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3.11 Primes between successive Fibonacci num-

bers

The nth Fibonacci number, denoted F (n) is defined recursively as:

• F (0) = 0

• F (1) = 1

• F (n) = F (n− 1) + F (n− 2) for n ≥ 2

Investigate how the number of primes between F (n) and F (n + 1),
inclusive, grows with n.

As a variant on this problem, Investigate how the number of primes
between the nth and (n+ 1)st, inclusive, Catalan numbers grows with
n.
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3.12 Numbers with a factor having the same num-

ber of 1s, base 2

James Tanton (@jamestanton ) asked the following question on Twit-
ter, Wednesday, August 8, 2018:

“Which positive integers n have a factor k < n so that n and k have
the same number of 1s in binary?”

Is it obvious this is true for powers of 2?

What about prime numbers n?

And what about squares of primes?

As a variant, which positive integers n have a factor k < n so that n
and k have the same number of 0s in binary?
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3.13 Occurrences of the digit 2 in the base 3 ex-

pansion of powers of 2

The base 3 expansion of 28 = 256 is 100111, because

1× 35 + 0× 34 + 0× 33 + 1× 32 + 1× 31 + 1× 30 = 256

There is no digit“2” in the base 3 expansion of 28 = 256, and a famous
conjecture of Paul Erdös is that this is the last n for which 2n has no
digits 2 in its base 3 expansion: namely, Erdös conjectures that for all
n > 8, the base 3 expansion of 2n does contain the digit 2 at least once.

Can we be more quantitative about this? What does experiment sug-
gest is the average number of occurrences of the digit 2 in the base 2
expansion of 2n?

In other words, suppose we compute the number of occurrences of the
digit 2 in the base 3 expansion of 2k for all k ≤ n and form the average
of all those numbers. What is a good estimate of how that average
varies with n?
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3.14 Prime values of np + pn

For a positive integer n let FTP(n) denote the first positive integer p
for which np + pn is prime (or ∞ if there is no such p).

For example FTP(3) = 2 because 32 + 23 = 17 is prime, but 3p + p3 is
not prime for p = 1.

Similarly, FTP(5) = 24 because 524 + 245 = 59604644783353249 is
prime, but 5p + p5 is not prime for any p < 24.

A list of the values FTP(n) for n from 1 through 7 is:

n FTP(n)
1 1
2 1
3 2
4 1
5 24
6 1
7 54

Investigate further values of FTP(n): in particular, what are the values
FTP(8) through FTP(13)?
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3.15 Binary disjoints

For a positive integer n, call a positive integer k < n a binary disjoint
of n if the binary representations of k and n have no 1’s in common
places.

For example, 5 is a binary disjoint of 10 because 5 = 101 base 2, and
10 = 1010 base 2: 5 has 1’s in the 20 and 22 places, while 10 has 1’s in
the 21 and 23 places.

10 is the sum of its binary disjoints: 1, 4, 5. Is there any other positive
integer that is the sum of its binary disjoints?

James Tanton (@jamestanton) asked on Twitter on April 14, 2018,
which n are a multiple of each of their binary disjoints - are these just
the numbers of the form n = 2k − 2, or are there other such numbers?

Which n have only 1 as a binary disjoint?

Note that 9 and 25 have the same set of binary disjoints: 2, 4, 6. Let’s
call such a pair “binary disjoint friends”. What other pairs of binary
disjoint friends can you find?
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3.16 Probability random points are in convex po-

sition

Suppose that n points are chosen uniformly randomly and indepen-
dently from inside the square [0, 1]× [0, 1].

Figure 13: 4 uniformly random points in a square

The points are in convex position if each point is an extreme point of
the convex hull of all the points.
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Figure 14: Convex hull of 4 uniformly random points in a square

What is the probability, as a function of n, that n uniformly random
points in the square are in convex position ?
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3.17 Numerators of the fractional parts of powers

of 3/2

It is a famous long-standing problem whether the fractional parts of
(32)

n are uniformly distributed in the interval [0, 1].

If we denote by fp(x) the fractional part of a real number x, “uniformly
distributed” means for all 0 ≤ a < b ≤ 1

#{k ≤ n : a ≤ fp((3/2)k) ≤ b}
n

→ b− a as n → ∞

This is a notoriously difficult problem on which mathematicians are
actively working.

What, however can you say about the behavior, or even the average
behavior, of the numerators of the fractional parts of (32)

n? The first
20 numerators are:

1, 1, 3, 1, 19, 25, 11, 161, 227, 681, 1019, 3057, 5075, 15225, 29291,
55105, 34243, 233801, 439259, 269201
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3.18 Distribution of areas of right triangles with

rational sides

Imagine going down the Calkin-Wilf tree (see the section “The Calkin-
Wilf tree”) to, for example, the 10th level.

Form all pairs of rational numbers (ab ,
c
d) and select those pairs for

which a
b <

c
d and (ab )

2 + ( cd)
2 is a rational number.

Such pairs give a right triangle with rational side lengths a
b ,

c
d and

e

f
=

√
(
a

b
)2 + (

c

d
)2

with rational area a/b×c/d
2 .

What can you say about the probability distribution of those areas?
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3.19 Positive integers with positive sine

A short list of positive integers n for which sin(n) > 0 appears in the
Online Encyclopedia of Integer Sequences: A070752.

Can you characterize these positive integers in some other way?

Here’s a a plot of the first 100 such integers:
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and here’s a plot of the first 200 first-differences:
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3.20 Distribution of sin2(n)

We can try to assign a probability to the - potentially infinite - set of
positive integers k for which sin2(n) > z where 0 ≤ z ≤ 1 as follows:

Pr(sin2(k) > z) := lim
n→∞

#{k : k ≤ n and sin2(k) > z}
n

assuming this limit exists.

For example, for z = 1
2 we plot

#{k : k ≤ n and sin2(k) > 1
2}

n

versus n for n from 1 to 5000:

which appears to converge to approximately 2
3 .
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So the first question is: does

lim
n→∞

#{k : k ≤ n and sin2(k) > z}
n

exist for all 0 ≤ z ≤ 1?

Investigate this question computationally and theoretically.

Then, what does the distribution of sin2(n) for n a positive integer
look like? Compute many values - say for n from 1 to 50, 000 - and
describe a histogram of those values.
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3.21 Multiplicative cost of a polynomial

In the article:

Norfolk, M. (2021). The Cost of a Positive integer. Rose-
Hulman Undergraduate Mathematics Journal, 22(1), 9.

the author, Maxwell Norfolk, discusses various “cost” functions for
natural numbers.

In particular he discusses what we will call the “multiplicative cost”
C(n) of a positive integer n:

C(n) := min{n, {C(a) + C(b) : a× b = n}}

Generalize the multiplicative cost function to the ring of polynomials
Z[x] with integer coefficients, where we place an order on polynomials
as follows:

p(x) < q(x) if the leading coefficient of q(x)− p(x) is positive

What analogous results from Maxwell Norfolk’s article carry over to
the polynomial ring Z[x]?
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4 Research problems

The problems listed in this section are:

• Relatively easy to understand.

• Have no known published solution at the time they were written
here.

• Are approachable in that a persistent and adaptable student has
a chance of making good progress toward a solution.
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4.1 Random walks with memory

The integer lattice in the plane is the set of points p = (m,n) where
m and n are integers (positive, negative or zero):

A random walk on the integer lattice is a finite sequence of points

p1 = (m1, n1), p2 = (m2, n2), . . . , pk = (mk, nk)

where each pi+1 is obtained from pi by moving up, down, left, or right
one unit with probability 1

4 .

The memory of a random walk is the number of points before any
given point that the random walk stores and cannot visit until they
slip out of the memory store.
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So, a random walk with memory 0 has no constraints – it can move
up, down, left, or right with probability ¼ from any given point. A
random walk with memory 1 (also called a no-backtracking random
walk) is constrained to not visit the point is just previously visited. A
random walk with infinite memory (also called a self-avoiding walk)
gets trapped quickly, with probability 1.

A lot is known about random walks with memory 0, 1 and ∞. However
for intermediate finite memory much less is known. For example, a
random walk with memory 7 can get trapped:
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Questions

We consider random walks with initial point (that is, starting from)
p1 = (0, 0).

1. Does a random walk of memory 7 get trapped with probability
1?

2. What is the average length of a random walk of memory 7 ?

3. Given a square of the integer lattice with corners (±n,±n) what
is the average number of steps for a random walk of memory 7
to exit the square?

4. What about random walks with other finite non-zero memories?

5. What about random walks with memory on other lattices – tri-
angular or hexagonal lattices, for example?
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4.2 Convergence of a family of sequences?

The sequence a(1), a(2), a(3), . . . is defined recursively by:

1. a(1) = 1

2. a(n) = ⌈a(1)+a(2)+...+a(n−1)+1
2 ⌉, where for a real number x, ⌈x⌉ is

the ceiling of x - that is, the smallest integer ≥ x.

This is sequence A005428 in the Online Encyclopedia of Integer Se-
quences, where you can find background on its context.

Below is a plot of the ratio a(n+1)
a(n) of successive terms of the sequence:

It seems

lim
n→∞

a(n+ 1)

a(n)
=

3

2

Is this so?

Can you prove it?
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What about sequences a(1), a(2), a(3), . . . defined recursively as:

1. a(1) = 1

2. a(n) = ⌈a(1)+a(2)+...+a(n−1)+p
q ⌉, where p, q are positive integers.

Does the ratio a(n+1)
a(n) approach a limit for all p, q and if so, how does

the value of the limit depend on p and q?
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4.3 Balanced colorings of graphs

In this problem we use the term “graph” to mean a simple graph with
undirected edges as described in Wikipedia:

A graph is an ordered pair G = (V,E) comprising:

1. V , a set of vertices (also called nodes);

2. E ⊆ {{x, y} | x, y ∈ V and x ̸= y}, a set of edges,
which are unordered pairs of vertices (that is, an
edge is associated with two distinct vertices).

Graphs are usually represented visually by drawing a
point or circle for every vertex, and drawing a line be-
tween two vertices if they are connected by an edge.

Figure 15: Drawing of a graph with 10 vertices and 15 edges
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For a vertex v in a graph, a neighbor of v is a vertex w ̸= v for which
there is an edge {v, w} connecting v and w.

Imagine we color the vertices of a graph so that each vertex is colored
with one of two colors, which we conveniently call red and blue. In the
article:

Tabatabai, P., & Gruber, D. P. (2021). Knights and liars
on graphs. Journal of Integer Sequences, 24(2), 3.

the authors call a red and blue coloring of the vertices of a graph
red-balanced if:

• for every red vertex v it is true that exactly half the neighbors
of v are red;

• for every blue vertex v it is not true that half the neighbors of v
are red.

Note that the only way for the Peterson graph, drawn above, with 10
vertices and 15 edges can be colored so as to be red-balanced is for
every vertex to be colored blue - that is due to the fact that every
vertex has exactly 3 neighbors:
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The red and blue colored graph shown below, whose vertices are on a
4× 4 grid, is red-balanced:

Here is another example of a red-balanced coloring of a graph:

A graph is k-regular if all vertices have exactly k neighbors. 3-regular
graphs are also called cubic graphs, and the only red-balanced coloring
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of a cubic graph is one in which all vertices are colored blue. Below is
a 4-regular graph in which, also, the only red-balanced coloring is one
in which all vertices are colored blue:

For k a positive integer, characterize 2k-regular graphs for which the
only red-balanced coloring is one in which all vertices are colored blue.
In particular, which 4-regular graphs have as a red-balanced coloring
only the one in which all vertices are colored blue? See here for exam-
ples of 4-regular graphs.
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4.4 Cycles in the directed graphs of finite rings

In the article:

Bounds, M. (2020). New Theorems for the Digraphs of
Commutative Rings. Rose-Hulman Undergraduate Math-
ematics Journal, 21(1), 4.

the author, Morgan Bounds, discusses various theorems and problems
related to the structure of directed graphs associated with the finite
commutative ring Zn of integers modulo n.

The directed graph Γ(Zn) associated to the commutative ring Zn of
integers modulo n has:

1. Pairs (a, b) with 0 ≤ a, b ≤ n− 1 as vertices.

2. A directed edge from:

vertex (a, b) to vertex (a+ b (mod n), a× b (mod n))

An open problem in Bounds paper is to determine, from the structure
of the integer n, the number and lengths of cycles in Γ(Zn).

In another direction, we know that every finite simple ring is essentially
a ring Mn(Fq) of n × n matrices over a finite field Fq (Wedderburn’s
theorem). How do the cycles in the directed graph Γ(Mn(Fq)) depend
on n and q?
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5 Unsolved problems

Remember that as challenging and intriguing as you may find these
problems they are mostly problems that several, if not many, profes-
sional mathematicians have thought about long and hard and have not
yet been able to resolve. While it’s sensible to be aware of these un-
solved problems, and perhaps to think for a short time what the prob-
lem entails, it is generally not a wise move to spend a long time thinking
about these hard unsolved problems simply because the chance of solv-
ing them is very low, and time spent on them means time taken away
from other potentially solvable problems.

It is part of one’s mathematical education to be aware of these unsolved
problems - sometimes they actually get solved! - but not to become
obsessed with finding a solution, because this can lead to what Richard
Lipton describes as a “mathematical disease”:

What Is a Mathematical Disease?

There is another type of “bug” that affects mathemati-
cians—the attempt to solve certain problems. These prob-
lems have been called “diseases”, which is a term coined by
the great graph theorist Frank Harary. They include many
famous problems from graph theory, some from algebra,
some from number theory, some from complexity theory,
and so on.

Have fun trying to understand what these unsolved mathematical prob-
lems are about, become more familiar with where the difficulties lie,
but try to avoid becoming unhealthily obsessed with any of them. Have
fun, enjoy!
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5.1 How often does each positive integer occur in

Pascal’s triangle?

The number 1 clearly occurs infinitely often in Pascal’s triangle. How-
ever integers n > 1 occur only a finite number of times.

Can you devise ways of calculating for any given integer n > 1 how
often n occurs in Pascal’s triangle?

A famous conjecture of David Singmaster is that there is a number N
such that every integer n > 1 occurs no more than N times in Pascal’s
triangle.

So far no one has found an n > 1 that occurs more than 8 times in
Pascal’s triangle (so maybe N = 8?).
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5.2 A prime between successive powers of an in-

teger ?

Samantha had heard about a famous unsolved problem: that there is
always a prime number between n2 and (n+1)2, for all natural numbers
n.

Being a quantitative data-oriented person, Samantha did some calcu-
lations and came up with a stronger thought: “It seems to me”, said
Samantha, “on the basis of calculational evidence, that the number of
primes between n2 and (n+ 1)2 is always greater than n

9”.

Could Samantha be right?

What does experiment suggest is the average number of primes be-
tween n2 and (n+1)2? In other words, suppose we compute the num-
ber of primes between k2 and (k + 1)2? for all k ≤ n and form the
average of all those numbers. What is a good estimate of how that
average varies with n?
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5.3 Is there a polyomino or order 5?

A polyomino is a connected collection of squares each of which is con-
nected to another square along an entire edge:

Figure 16: Polyominos constructed from 4 squares

The order of a polyomino is the minimum number of copies of the
polyomino that can tile a rectangle (assuming that can be done).

There are polyominos of order 4:
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Figure 17: A rectangle tiled by 4 copies of a polyomino, no fewer copies
of which tile a rectangle

There is no polyomino of order 3.

Is there a polyomino of order 5?
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5.4 Runs of 0s in the binary expansion of the

square root of 2

A problem of Paul Erdös asks if there are there arbitrarily long se-
quences of 0’s in the binary expansion of

√
2.
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5.5 Erdös–Straus conjecture

Is it true that for every positive integer n there are positive integers
a, b, c such that

4

n
=

1

a
+

1

b
+

1

c

See here for more details.

For recent work on this problem by a top-rate mathematician see:

Elsholtz, C., and Tao, T. (2013). Counting the number of
solutions to the Erdős–Straus equation on unit fractions.
Journal of the Australian Mathematical Society, 94(1), 50-
105.

104

https://en.wikipedia.org/wiki/Erd\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {o\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font)              }\let \protect \immediate\write \m@ne {LaTeX Font Info:     on input line 1455.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 125 o\egroup \spacefactor \accent@spacefactor s\OT1\textendash Straus_conjecture
https://terrytao.files.wordpress.com/2011/07/egyptian-count13.pdf
https://terrytao.files.wordpress.com/2011/07/egyptian-count13.pdf


5.6 Catalan pseudo-primes

The nth Catalan number Cn is defined recursively as:

1. C1 = 1

2. Cn+1 =
2(2n+1)
n+2 Cn

The Catalan numbers arise in many counting problems.

Christian Aebi and Grant Cairns showed that if p is a prime number
then

(−1)
p−1
2 Cp−1

2

leaves a remainder of 2 when divided by p:

Aebi, Christian, and Grant Cairns. Catalan numbers, primes,
and twin primes. Elemente der Mathematik 63, no.4 (2008):
153-164.

They asked if this could be true for odd non-primes and found 3 such
odd non-primes: 5907, 1194649, and 12327121. They call an odd com-
posite number n a Catalan pseudo-prime if

(−1)
n−1
2 Cn−1

2

leaves a remainder of 2 when divided by n:

Are there any Catalan pseudo-primes other than 5907, 1194649, and
12327121?
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5.7 Cycles in cubic graphs

A connected graph is cubic if all its vertices have degree 3.

Figure 18: A cubic graph

A special case of the Erdős–Gyárfás conjecture is that every cubic
graph contains a cycle of length a power of 2.

The cubic graph shown above has no cycles of length 2,4 or 8, but does
have cycles of length 16:
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Figure 19: A cycle of length 24 = 16, shown red
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5.8 How many factorials modulo a prime?

For a non-negative integer n the factorial n! is defined inductively as:

• 0! = 1

• n! = n× (n− 1)!

It is an open problem to determine, for all prime numbers p, the size
of the set

A(p) := {k!(mod p) : k = 0, 1, . . . , p− 1}

For example, for p = 13

A(p) = A(13) = {1, 2, 3, 5, 6, 7, 9, 11, 12}

which has size 9. Investigate how the size of A(p) varies with the prime
p.

Also try to estimate the average value of A(p) - that is, for a given
prime p, calculate the size of A(k) for primes k ≤ p and average those
values. Estimate how that average varies with p.
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5.9 Congruent numbers

A congruent number is a positive integer n such that there is a right
triangle with all sides rational numbers, and area n.

Figure 20: Rational right triangles with areas 5, 6, 7 respectively

Figure from Conrad, Keith (Fall 2008) “The congruent number prob-
lem”, Harvard College Mathematical Review, 2 (2): 58–73

It is a major unsolved problem which positive integers are congruent
numbers.

The question of whether n is a congruent number is equivalent to
the question of whether the elliptic curve y2 = x3 − n2x has a point
(x, y), y ̸= 0, on the curve with both x, y rational numbers (a “rational
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point”). (Refer to the section “Features of elliptic curves” in these
notes).

Figure 21: The rational point (25,120) on the elliptic curve y2 = x3 −
72x establishes 7 as a congruent number

See Conrad, Keith (Fall 2008), “The congruent number problem”, page
5, for details of a connection between rational points on elliptic curves
and congruent numbers.

110

https://kconrad.math.uconn.edu/blurbs/ugradnumthy/congnumber.pdf


We could broaden our search and look for rational numbers n = p
q -

not simply integers - for which there is a right triangle with rational
side lengths and area n = p

q .

See if, for example, you can find such a right triangle for n = 7
2 .

We know that π ≈ 22
7 . Can you find a right triangle with rational side

lengths whose area is 22
7 ?
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5.10 Small convex polygons of maximum perime-

ter

A convex polygon is called small if its diameter - the maximum distance
between 2 points in the polygon - is 1.

A small square has side length 1√
2
and therefore has perimeter 4√

2
=

2
√
2 ≈ 2.82843.

However there are small convex quadrilaterals with larger perimeter.
The small convex quadrilateral with maximum perimeter is shown be-
low:

Figure 22: The convex quadrilateral with maximum perimeter 2−
√
2+√

6 ≈ 3.03528
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This was established in:

Tamvakis, N. K. (1987).On the perimeter and the area of
the convex polygon of a given diameter.Bulletin of the Hel-
lenic Mathematical Society, 28, 115-132.

For a given positive integer n what is a small convex polygon with n
sides and maximum perimeter?

This is still an unsolved problem for general n.

For n = 8 - that is, small octagons - an answer, at least numerically,
appears in:

Audet, C., Hansen, P., & Messine, F. (2007). The small
octagon with longest perimeter. Journal of Combinatorial
Theory, Series A, 114(1), 135-150.
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5.11 Moving a a large sofa around a corner

What is the region of largest area which can be moved around a right-
angled corridor of width one?

See: “Moving Sofa Problem” at Wikipedia.

See, also, the interesting article:

Romik, D. (2018). Differential equations and exact solu-
tions in the moving sofa problem. Experimental Mathe-
matics, 27(3), 316-330.

and:

Kallus, Y. & Romik, D. (2018). Improved upper bounds in
the moving sofa problem. Advances in Mathematics, 340,
960-982.
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5.12 A simply stated undecidable problem?

The Collatz conjecture states that if we start from any positive integer
n and repeatedly apply the function:

f(n) =

{
n
2 if n is even

3n+ 1 if n is odd

to get f(n), f(f(n)), f(f(f(n))), . . . we will eventually get to 1.

For example, starting from n = 17 and repeatedly applying the func-
tion f to the result, we reach 1 in 12 steps:

The Collatz conjecture has generated a huge body of work, none of it
conclusive.

Patrick Honner has a nice readable article on the conjecture: “The
Simple Math Problem We Still Can’t Solve” in Quanta Magazine.

Terry Tao also has a very readable account of many aspects of the Col-
latz conjecture, which is great to see how one of the world’s outstanding
mathematicians thinks about such a notorious problem.

Additionally,Terry Tao’s 2020 article describing his recent thinking, on
and results for, the Collatz conjecture is available on the arxiv pre-print
server:

Tao, T. (2019). Almost all orbits of the Collatz map attain
almost bounded values. arXiv preprint arXiv:1909.03562.

What is potentially intriguing, following a train of thought that began
with John Horton Conway:
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Conway, John H. (1972). Unpredictable iterations. Proc.
1972 Number Theory Conf., Univ. Colorado, Boulder. pp.
49–52.

is that this conjecture might be undecidable, largely because slightly
modified problems have been proven undecidable:

Lehtonen, E. (2008).Two undecidable variants of Collatz’s
problems.Theoretical Computer Science, 407(1-3), 596-600.

By “undecidable” we mean there is provably no algorithm to decide
the conjecture in all cases.
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5.13 Convergence of a sequence?

The sequence (xn)n≥1 of real numbers xn is defined as follows:

xn :=
1

n2 sin(n)

Here is (part of) a plot of the first 1000 terms x1, x2, . . . , x1000:

A still open question is: does the sequence (xn)n≥1 converge to 0?

“Convergence to 0” means, precisely, for all positive real numbers ϵ > 0
there is a positive integer N such that

−ϵ < xn < ϵ

for all n ≥ N .

This question is closely related to the irrationality measure of π.

A closely related and still unsolved problem is convergence of the Flint
Hills series, which is an infinite series that can be defined in terms of
its sequence of partial sums Sn as follows:
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• S1 =
1

sin(1)

• Sn = Sn−1 +
1

n3 sin2(n)

The question is whether the sequence of partial sums Sn converges to
a limit.

Below is a plot of the first 10,000 partial sums of the Flint Hills series
S1, S2, . . . , S10000:
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The plot below shows the partial sums from S2000 through S10000:

while the plot below shows the partial sums from S5000 through S10000:
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5.14 A lower bound for the size of sin(n)

Computation of the first 10,000,000 values of sin(n), for n a positive
integer, establishes that

| sin(n)| > 1

4n2

for 1 ≤ n ≤ 107.

Is this true for all positive integers n?

If so then
1

n2
√
| sin(n)|

<
2

n

for all positive integers n so the sequence

1

n2
√
| sin(n)|

converges to 0.

Consequently, by a result of Max Alekseyev, the irrationality measure
µ(π) of π is no greater than 1 + 2

1/2 = 5, which is a substantial im-

provement on what is known about µ(π).
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5.15 Giuga’s conjecture on primality

In

Borwein, D., Borwein, J. M., Borwein, P. B., and Girgen-
sohn, R. (1996). Giuga’s conjecture on primality. The
American Mathematical Monthly, 103(1), 40-50.

the authors discuss a conjecture on primality due to Giuseppe Giuga:

Giuga, G. (1950). Su una presumibile proprieta caratteris-
tica dei numeri primi. Ist. Lombardo Sci. Lett. Rend. Cl.
Sci. Mat. Nat.(3), 14(83), 511-528.

who observed that if p is a prime number then

sp := 1 +

p−1∑
k=1

kp−1

is divisible by p

Giuga conjectured this could not happen when p is not prime, so the
relevant question is the following:

is there a composite (that is, non-prime) number n for which

sn := 1 +
n−1∑
k=1

kn−1

is divisible by n?
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